An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam.

نویسندگان

  • Eun Kyu Her
  • Hee-Suk Chung
  • Myoung-Woon Moon
  • Kyu Hwan Oh
چکیده

Angled nano-scale tunnels with high aspect ratio were fabricated on poly(methyl methacrylate) (PMMA) using a focused ion beam (FIB). The fabrication parameters such as ion fluence, incidence angle, and acceleration voltage of the Ga(+) ion beam were first studied on the PMMA surface to explore the formation of the nano-scale configurations such as nano-holes and cones with diameter in the range of 50-150 nm at an ion beam acceleration voltage of 5-20 kV. It was also found that the PMMA surface exposed to FIB was changed into an amorphous graphitic structure. Angled nano-scale tunnels were fabricated with high aspect ratio of 700-1500 nm in depth and 60 nm in mean diameter at an ion beam acceleration voltage of 5 kV and under a specific ion beam current. The angle of the nano-tunnels was found to follow the incident angle of the ion beam tilted from 0 degrees to 85 degrees , which has the potential for creating a mold for anisotropic adhesives by mimicking the hairs on a gecko's feet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denture base polymers, poly methyl methacrylate improved using free radical copolymerization

Poly methyl methacrylate (PMMA) is the most common material used in Prosthodontics. Several studies indicate a breakdown of the number of very high resin bases after 2 to 3 years to avoid breaking bass and several attempts have been made, such as altering the chemical structure of resin by adding causes cross linking or copolymerization. The innovative method for improving the physical properti...

متن کامل

Tunable nano devices fabricated by controlled deposition of gold nanoparticles via focused ion beam

0167-9317/$ see front matter 2009 Elsevier B.V. A doi:10.1016/j.mee.2009.12.031 * Corresponding author. E-mail address: [email protected] (Z. Zalevsky) In this paper, we present the fabrication procedures as well as the preliminary experimental results of a novel method for significantly simplified deposition of charged nanoparticles at specific patterns based on focused ion beam (FIB) tech...

متن کامل

A Quantitative Comparison between Helium Ion and Electron Beam Lithography on PMMA Resist

Helium ion beam lithography (HIBL), an emerging technique that uses a sub-nanometre focused beam of helium ions to expose resist, has introduced an alternative to electron beam lithography (EBL) to extend beyond existing minimum feature sizes. HIBL has several advantages over EBL, including a higher patterning resolution due to a smaller spot size [1] and a reduced proximity effect due to low i...

متن کامل

Synthesis, characterization and thermal study of poly (methyl methacrylate)-Co3O4 nanocomposite film

Nanosized metal oxides dispersed polymer composites constitute a fascinating class of polymer composite materials. Synthesis of such composite materials through solvent casting enhances the polymer synthetic technology. Solvent casting method was used to prepare Cobalt oxide (Co3O4) dispersed Poly (methyl methacrylate) (PMMA) nano composite<span style="text-decoration: und...

متن کامل

Synthesis, characterization and thermal study of poly (methyl methacrylate)-Co3O4 nanocomposite film

Nanosized metal oxides dispersed polymer composites constitute a fascinating class of polymer composite materials. Synthesis of such composite materials through solvent casting enhances the polymer synthetic technology. Solvent casting method was used to prepare Cobalt oxide (Co3O4) dispersed Poly (methyl methacrylate) (PMMA) nano composite<span style="text-decoration: und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 28  شماره 

صفحات  -

تاریخ انتشار 2009